Dawson College
 M athematics Department
 FINAL EXAMINATION
 Engineering M athematics II
 201-942-DW section 00001

December 13th, 2019
Instructor: Oxana Cerba
Time: 9:30-12:30

Instructions:

- Print your name and student ID number in the space provided on the Cover Sheet.
- All questions are to be answered directly on the examination paper in the space provided. Show your complete work and give explanations.
- ONLY SHARP EL-531X, XG or XT are permitted.

This examination consists of 14 questions. Please ensure that you have a complete examination.

This examination must be returned intact.

Question 1. [9 marks] Find the derivative of each function below. DO NOT SIMPLIFY
(a) $y=\left(7 x^{3}-{ }^{\sqrt{x}}\right)^{14}$
(b) $y=\frac{x+2}{x^{2}-2 x}$
(c) $y=\left(x^{2}-1\right)^{5}(x-3)^{4}$

Question 2. [4 marks] The angular displacement of a rotating body is given by $\theta=$ $18.5 \mathrm{t}^{2}+12.8 \mathrm{t}+14.8 \mathrm{rad}$. Find (a) the angular velocity and (b) the angular acceleration at $\mathrm{t}=3.50 \mathrm{~s}$.
Question 3. [6 marks] Given ${ }^{\sqrt{ }} \overline{x y}=2 x+y^{2}$. Using implicit differentiation find y^{0}.
Question 4. [6 marks] Given $f(x)=\sqrt{ } \overline{4+3 x}$.
(a) Using the definition of the derivative find $\mathrm{f}^{9} \mathrm{x}$). (No points will be given for other method of solutions.)
(b) Find the equations of the tangent and normal lines at the point (4, 4).

Question 5. [6 marks] A point moves along the curve $x^{2}-y^{2}=144$ with a horizontal velocity $\mathrm{v}_{\mathrm{x}}=15.0 \mathrm{~cm} / \mathrm{s}$. Find the total velocity when the point is at ($13.0,5.0$)

Question 6. [8 marks] A car leaves an intersection traveling west. It s position 4 sec later is $20 f \mathrm{ft}$ from the intersection. At the same time another car leeves the same intersection heading north so that its position 4 sec later is 28 ft from the intersection. If the speed of the cars at that instant of time is $9 \mathrm{ft} / \mathrm{sec}$ and $11 \mathrm{ft} / \mathrm{sec}$ respectively, find the rate at which the distance between the two cars is changing.

Question 7. [4+4 marks] Given the function $f(x)=x^{4}-2 x^{2}+4$
(a) Find max/min and intervals where the function is increasing / decreasing.
(b) Find inflection points and intervals of concavity.

Question 8. [8 marks] A manufacturer needs to make a cylindrical can that will hold 1.5 liters of liquid. Determine the dimensions of the can that will minimize the amount of material used in its construction. $\left(V_{\text {cylinder }}=\pi r^{2} h, \quad A_{\text {lateral }}=2 \pi r h\right)$

Question 9. [12 marks]
(a) ${ }^{R} x^{7}\left(1+x^{8}\right)^{31} d x$
(b) $\frac{R}{1+\frac{x^{2}}{x}} d x$
(c) $R_{\sqrt[3]{3}} x^{\sqrt{ }} \overline{7+x^{2}} d x$
(d) $R_{3} \frac{d x}{1+5 x}$

Question 10. [3+4 marks]
(a) Find the area of the region bounded by the graph of $y=2-x^{2}$ and $y=x^{2}$
(b) Find the coordinates \bar{x} and \bar{y} of the center of mass of a thin plate covering the region from part (a)

Question 11. [6 marks] A canister is dropped from a helicopter 500 m above the ground. Its parachute does not open, but the canister has been designed to withstand an impact velocity of $100 \mathrm{~m} / \mathrm{s}$ Will it burst? (Take $\mathrm{g}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$)

Question 12. [6 marks] Find the solution of the differential equation that satisfies the given initial condition $y^{0}=\frac{y^{2}}{x}, y(1)=\frac{1}{2}$

Question 13. [6 marks] Find the exact length of the curve $y=\frac{x^{3}}{3}+\frac{1}{4 x}$ for $1 \leq x \leq 2$
Question 14. [8 marks] A conical tank with height 10 m and base radius 4 m is full of water. Find the work needed to pump the water to a height of 6 m above the top of the tank. (The density of the water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$)

Question 1 (a) $y^{0}=14\left(7 x^{3}-^{\sqrt{ }} \bar{x}\right)^{13}\left(21 x^{2}-\frac{1}{2} x^{-\frac{1}{2}}\right) \quad$ (b) $y^{0}=\frac{\sqrt{ }{ }^{x^{2}-2 x}-(x+2)\left(x^{2}-2 x\right)^{-\frac{1}{2}}(x-1)}{x^{2}-2 x}$
(c) $y^{0}=10 x\left(x^{2}-1\right)^{4}(x-3)^{4}+4\left(x^{2}-1\right)^{5}(x-3)^{3}$

Question $2 \omega=142.3 \mathrm{rad} / \mathrm{s} \quad \alpha=37 \mathrm{rad} / \mathrm{s}^{2}$
Question $3 y^{0}=\frac{4^{\sqrt{x}} \overline{x y}-y}{x-4 y}$
Question $4 y^{0}=\frac{\sqrt{2}}{2} \frac{3}{4+3 x} \quad y_{\text {tangent }}=\frac{3}{8} x+\frac{5}{2} \quad y_{\text {normal }}=-\frac{8}{3} x+\frac{44}{3}$
Question $5 \mathrm{v}=\frac{\mathrm{v}_{x}}{\cos \theta}=41.67 \mathrm{~cm} / \mathrm{s}$
Question 6 Using $x^{2}+y^{2}=z^{2}$ we have $\frac{d z}{d t}=14.18 f t / s$
Question 7
(a) $f^{q}(x)=4 x\left(x^{2}-1\right), f(x)$ is increasing on $[1,0] \cup[1, \infty[$ and decreasing on $]-\infty,-1] \cup$ [0,

