FINAL EXAMINATION - FALL 2011

Department of Mathematics, Dawson College
2:00-5:00pm, Dec. 21st 2011

201-943-DW: Applied Mathematics for Electronics Engineering Examiner: Emilie Richer

Name:
Student ID: \qquad

Instructions:

- Print your name and student ID number in the space provided above.
- All questions are to be answered directly on the examination paper in the space provided. If you need more space for your answer use the back of the page.
- No books, notes, graphing calculators, programmable calculators or electronic devices are permitted.
- SHOW ALL YOUR WORK. Show all your work clearly and justify all your answers.
- Verify that your final examination copy has a total of 17 pages including this cover page.

Question	\# Marks	
1	6	
2	4	
3	4	
4	5	
5	3	
6	4	
7	5	
8	5	
9	5	
10	4	
11	6	
12	30	
13	5	
14	6	
15	4	
16	4	
Total	100	

Question 1. (6 marks)
Simplify the given expressions. Express the results with positive exponents only.
a. $\left(\frac{2^{3} a^{-2} b^{\frac{1}{2}}}{2^{-2} a^{4} b^{-\frac{5}{2}}}\right)^{-2}$
b. $\frac{(3 t)^{-1}}{3 t^{-1}}$
c. $\frac{\left(n R T^{-2}\right)^{32}}{R^{-2} T^{32}}$

Question 2. (4 marks)
Solve the given equation. Check that your answer(s) are in fact solutions of the equation.
$\log x+\log (11+6 x)=1$

Question 3. (4 marks)
Solve the given quadratic equation in two different ways.
$y=18 x^{2}-21 x-4$

Question 4. (5 marks)
Consider the equation $y=\log _{2}(x+1)$.
a. Give the exponential form of the equation.
b. Graph the function $y=f(x)=\log _{2}(x+1)$
c. Give the domain and range of the function $f(x)=\log _{2}(x+1)$

Question 5. (3 marks)
If $f(x)=2 \log _{b} x$ and $f(8)=3$ find $f(4)$.

Question 6. (4 marks)
The current i (in A) in a certain electric circuit is given by $i=16\left(1-e^{-}\right.$

Question 7. (5 marks)
Solve the following system of equations.
$x+3 y+z=4$
$2 x-6 y-3 z=10$
$4 x-9 y+3 z=4$

Question 8. (5 marks)
Find the four solutions of the given equation that lie in the range $0^{\circ} \leq \theta .113477-5.20195 \mathrm{~T} 32 \mathrm{~T} \mathrm{\phi}$

Question 10. (4 marks)
Perform the indicated operation and simplify your answer.
$\frac{\frac{3}{x}+\frac{1}{x^{2}+x}}{\frac{1}{x+1}-\frac{1}{x-1}}$

Question 11. (6 marks)
Perform the indicated operations and simplify your answer.
$\left(\frac{4 x^{2}-9}{x^{3}-2 x^{2}}\right) \div\left(\frac{2 x^{2}+9 x+9}{x^{3}+x^{2}-6 x}\right)$

Question 12. (3 marks each $=30$ marks)
True of False. Indicate whether the given statements are true or false. In order to get full marks you much justify each of your answers.
a. The domain of $f(x)=2^{x}$ is $(-\infty, \infty)$. True or False?
b. $64^{-\frac{1}{3}}=-4$. True or False?
c. The polar form of the complex number $-1-j$ is $\left(\frac{\sqrt{2}}{45^{\circ}}\right)$. True or False?
d. $\frac{\ln x}{\ln y}=\ln x-\ln y$. True or False?
e. $\csc x=\frac{1}{\sin x}$. True or False?
f. Long division of $2 x^{3}-3 x^{2}+x-4$ by $x-3$ yields a remainder of 25 . True or False?
g. The vertex of the parabola given by the equation $y=x^{2}-7 x+1$ is $\left(\frac{7}{2}, \frac{-45}{4}\right)$
h. $j+j^{2}+j^{3}+j^{4}+j^{5} \ldots j^{62}+j^{63}=-1$. True or False?

Question 13. (5 marks)
Given the angle measurement $x=0.85$ radians, find the values of the angles A, B and C in the following diagrams. Justify your answers. (Note that each diagram represents a circle sector)

Question 14. (6 marks)
The equation $x^{3}+8=0$ has one real solution and two complex solutions.
a. Convert -8 to its polar and exponential complex forms.
b. Find the three cube roots of -8 (the three solutions of the equation $x^{3}+8=0$) by using three exponential forms of -8 . (Express your answers in rectangular form).
c. Find the three solutions of the equation by using both factoring and the quadratic formula.

Question 15. (4 marks)
Find the length x in the diagram below.

Question 16. (4 marks)
The sum of three electric currents that come together at a point in a circuit is zero. If the

