Name:

Student ID:

WINTER 2011 FINAL EXAM

Calculus for Electronics Engineering Technology
Dawson College: Department of Mathematics
Date: May 24th 2011, 9:30am to 12:30pm
Course Code: 201-NYA-05 Section 7
Examiner: xamgeo05 7

Question 1. (10 marks (1 mark each))
Differentiate the following functions with respect to x.
(a) $f(x$

Question 2. (6 marks)

Find the function $y=f(x)$ satisfying the following properties:

- $f^{\prime \prime}(x)=\frac{3}{x^{2}}+2 e^{1-x}$
- The slope of the tangent line to the curve $y=f(x)$ at $x=1$ is 2
- $y=f(x)$ passes through the point $(1,0)$

Question 3. (10 marks)
Use the graph of $y=f(x)$

Question 4. (4 marks)
Use the graph of the function $y=f(x)$ and its tangent line at $x=-2$ pictured below to find the value of $f^{\prime}(-2)$.

Question 6. (5 marks)
The charging voltage for a $0.1 \mu F$ capacitor is given by $v=0.25 t^{2}-2 t+5$ volts.

Question 7. (5 marks)
Sketch the curves $y=\sin x, y=0.5, x=0$ and $x=\frac{\pi}{2}$ and find the area between them.

Question 8. (10 marks (2.5 marks each))

Question 9. (10 marks)
Sketch the graph of $f(x)=x^{2}(x-2)^{2}$. Find and clearly identify on the sketch the following:
(a) The x and y intercepts
(b) The behavior of the function as x tends to $\pm \infty$
(c) The intervals where $f(x)$ is increasing/decreasing and any relative maxima or minima.
(d) The intervals where $f(x)$ is concave up/down and any points of inflection

SKETCH OF $f(x)=x^{2}(x-2)^{2}$

Question 10. 15 marks (3 marks each) Integrate the following.
(a)

$$
\int \frac{-2 \cos (4 x)}{\sin 4 x} d x
$$

(b)

$$
\int\left(4 x^{3}-6 x\right)\left(4 x^{4}-12 x^{2}\right)^{-5} d x
$$

(c)

$$
\int
$$

Question 11. (6 marks (2 marks each))
Find the value of the constant a in each of the following equations.
(a)

$$
\int \frac{7}{3 x^{6}} d x=a x^{-5}+C
$$

(b)

$$
\int-6 x^{3} d x=a x^{4}+C
$$

(c)

$$
\int 5 x^{\frac{-3}{2}} d x=\frac{a}{\sqrt{x}}+C
$$

Question 12. (5 marks)
A discharged ($V_{c}=0$ at $t=0$) 4 mF capacitor is to be charged by a current of $i=25 e^{1-0.75 t} \mathrm{~mA}$. Find the capacitor voltage $\left(V_{c}\right)$ at $t=135 \mathrm{~ms}$.

Question 13. (6 marks)
Find the equation of the line tangent to the curve $x y^{3}=e^{x}+y$ at the point $(0,-1)$.

Question 14. (4 marks)
Use the limit definition of $\mathbf{t f i} .1140[\mathbf{2 9 0 r} 4$.

BLANK PAGE
(Note: If you detach this page, make sure to hand it in with your exam)
Name:

