Student ID: _

WINTER 2012 FINAL EXAM Calculus for Electronics Engineering Technology

Dawson College: Department of Mathematics Date: May 22nd 2012, 9:30am to 12:30pm Course Code: 201-NYA-05 Section 6 Examiner: Emilie Richer

INSTRUCTIONS:

- All questions are to be answered directly on the examination paper in the space provided. If you need more space for your answer use the back of the page.
- SHOW ALL YOUR WORK: Show all your work clearly and justify all your answers.
- Verify that your final examination copy has a total of 19 pages including the cover page.

Question	# Marks	
1	10	
2	6	
3	5	
4	5	
5	5	
6	5	
7	5	
8	5	
9	5	
10	12	
11	10	
12	12	
13	5	
14	5	
15	5	

Question 1. (10 marks (1 mark each))

Question 2. (6 marks (1 mark each))

Integrate the following. (a)

$$\int 4x^3 - \bar{x} \, dx$$

(b)
$$\int (2x^2 - 3)^2 dx$$

(c)
$$\int 2x^3 + \cos x \, dt$$

(d)
$$\int e^x - \frac{1}{x} \, dx$$

(e) $\int \frac{2}{x^3} + e^{\pi} dx$

(f)

$$\int \frac{41x^3 - 3x^2 + 1}{x} \, dx$$

Question 3. (5 marks)

Sketch a graph that satisfies all of the following conditions:

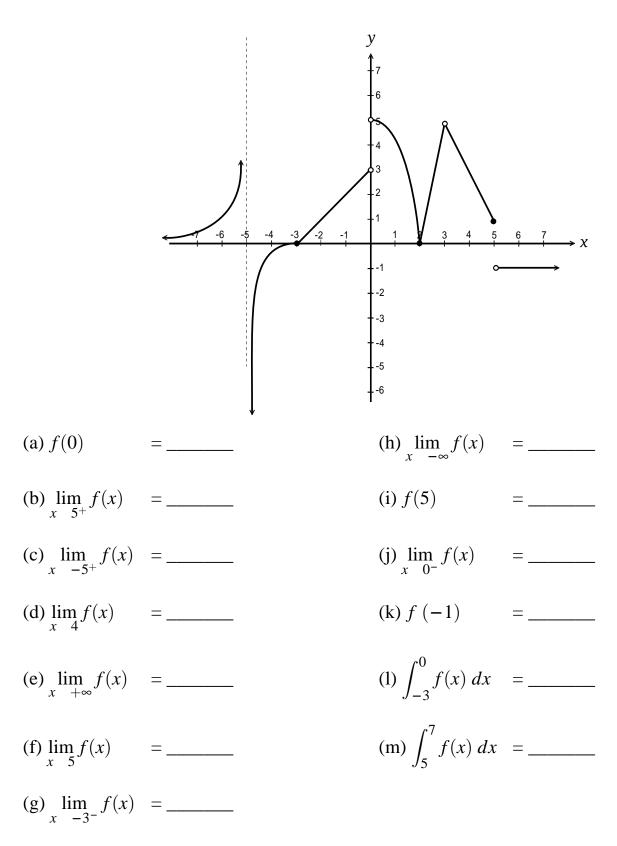
 $\lim_{x \to \infty} f(x) \quad \infty$ $\lim_{x \to 1^+} f(x) \quad \infty$ $\lim_{x \to 1^-} f(x) \quad -\infty$ $\lim_{x \to -1} f(x) = -1$ f(2) = 0

 $\lim_{x \to 2} f(x) \text{ does not exist}$ f(0) = 3

Question 4. (5 marks)

Evaluate the following limits. If the limit does not exist, determine if its one-sided limits tend to $\pm \infty$.

(a) $\lim_{x \to 1} \frac{x-1}{\bar{x}-1}$


(b) $\lim_{x \to -1} \frac{x^2 + 3x + 2}{x^2 - 1}$

(c) $\lim_{x \to \infty} \frac{x^2 + 3x^4 - 7x}{2x^3 + 2}$

(d) $\lim_{x \to \infty} \frac{3x^7 - x^8 + 2}{3x^8 - 7}$

Question 5. (5 marks)

Use the graph of y = f(x) pictured above to find the following values. If the value does not exist, write *DNE*.

Question 6. (5 marks)

Sketch the curves $y = 2\cos x$, y = 1 and find the area between them for $0 \quad x \quad \pi$.

Question 7.(5 marks)

Use logarithmic differentiation to find the derivative of the function $y = (\cos x)^{2x}$

Question 8. (5 marks)

Find the value of the constant *a* if the slope of the tangent line to the curve $y = -6ax^2 + 6x + 4$ at x = -2 is equal to 3.

Question 9. (5 marks)

Find the equation of the tangent line to the curve $f(x) = e^{2x} - 3x$ at the point (0, 1).

Question 10. (*12 marks (3 marks each)*) Find the derivatives of the following functions.

(a) $h(t) = e^{\cos(4t)}$

(b) $g(z) = 3z^{-2}\ln(\sin z)$

(c) $f(x) = \log_3(\tan(x^3))$

(d) $g(x) = (2x - 1)(\sin(4x))(e^{-x})$

Question 11. (10 marks) Sketch the graph of $f(x) = x^3 - 3x$. Find and clearly identify on the sketch the following:

(a) The $x \frac{2}{3}$ and

(d) The intervals where f(x) is concave up/down and any points of inflection

SKETCH OF $f(x) = x^3 - 3x$

Question 12. 12 marks (3 marks each)

Integrate the following. (a)

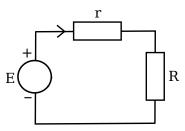
$$\int \frac{-2\sin(2x)}{\cos 2x} \, dx$$

(b)

$$\int (20x^4 - 18x^2)(2x^5 - 3x^3)^{-8} dx$$

(c)
$$\int \sin^3 x \cos^2 x \, dx$$

(d)


$$\int_{-1}^{4} x \quad \overline{8-x} \, dx$$

Question 13. (5 marks)

A discharged ($V_c = 0$ at t = 0) 4mF capacitor is to be charged by a current of $i = 25e^{1-0.75t}$ mA. Find the capacitor voltage (V_c) at t = 135ms.

Question 14. (5 marks)

In the electric circuit shown below, the voltage E = 5 (in volts) and resistance r = 100 (in ohms) are constant, *R* is the resistance of a load.

In such a circuit, the electric current *i* is given by $\frac{E}{r+R}$ and the power *P* delivered to the load *R* is given by $P = Ri^2$.

Given that R is positive, determine the value of R so that the power P delivered to R is a maximum.

Question 15. (5 marks) Use implicit differentiation to find the y in the following equations. (a) $x^2y^3 + x + 2y = 0$

(b) $\ln(x\sin y) + y = x^2$

BLANK PAGE

(Note: If you detach this page, make sure to hand it in with your exam)

Name: _____