Student ID:

\qquad

WINTER 2012 FINAL EXAM
 Calculus for Electronics Engineering Technology

Dawson College: Department of Mathematics
Date: May 22nd 2012, 9:30am to 12:30pm
Course Code: 201-NYA-05 Section 6
Examiner: Emilie Richer

INSTRUCTIONS:

- All questions are to be answered directly on the examination paper in the space provided. If you need more space for your answer use the back of the page.
- SHOW ALL YOUR WORK: Show all your work clearly and justify all your answers.
- Verify that your final examination copy has a total of 19 pages including the cover page.

Question	\# Marks	
1	10	
2	6	
3	5	
4	5	
5	5	
6	5	
7	5	
8	5	
9	5	
10	12	
11	10	
12	12	
13	5	
14	5	
15	5	

Question 1. (10 marks (1 mark each))

Question 2. (6 marks (1 mark each))
Integrate the following.
(a)

$$
\int 4 x^{3}-\sqrt{ } \bar{x} d x
$$

(b)

$$
\int\left(2 x^{2}-3\right)^{2} d x
$$

(c)

$$
\int 2 x^{3}+\cos x d t
$$

(d)

$$
\int e^{x}-\frac{1}{x} d x
$$

(e)

$$
\int \frac{2}{x^{3}}+e^{\pi} d x
$$

(f)

$$
\int \frac{41 x^{3}-3 x^{2}+1}{x} d x
$$

Question 3. (5 marks)

Sketch a graph that satisfies all of the following conditions:
$\lim _{x \rightarrow \infty} f(x) \rightarrow \infty$
$\lim _{x \rightarrow 1^{+}} f(x) \rightarrow \infty$
$\lim _{x \rightarrow 1^{-}} f(x) \rightarrow-\infty$
$\lim _{x \rightarrow-1} f(x)=-1$
$f(2)=0$
$\lim _{x \rightarrow 2} f(x)$ does not exist
$f(0)=3$

Question 4. (5 marks)

Evaluate the following limits. If the limit does not exist, determine if its one-sided limits tend to $\pm \infty$.
(a) $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{\bar{x}-1}$
(b) $\lim _{x \rightarrow-1} \frac{x^{2}+3 x+2}{x^{2}-1}$
(c) $\lim _{x \rightarrow-\infty} \frac{x^{2}+3 x^{4}-7 x}{2 x^{3}+2}$
(d) $\lim _{x \rightarrow \infty} \frac{3 x^{7}-x^{8}+2}{3 x^{8}-7}$

Question 5. (5 marks)
Use the graph of $y=f(x)$ pictured above to find the following values. If the value does not exist, write $D N E$.

(a) $f(0) \quad=$
(b) $\lim _{x \rightarrow 5^{+}} f(x)=$ \qquad
(c) $\lim _{x \rightarrow-5^{+}} f(x)=$ \qquad
(d) $\lim _{x \rightarrow 4} f(x)=$ \qquad
(e) $\lim _{x \rightarrow+\infty} f(x)=$ \qquad (1) $\int_{-3}^{0} f(x) d x=$
(f) $\lim _{x \rightarrow 5} f(x)=$ \qquad
(g) $\lim _{x \rightarrow-3^{-}} f(x)=$ \qquad

Question 6. (5 marks)

Sketch the curves $y=2 \cos x, y=1$ and find the area between them for $0 \leq x \leq \pi$.

Question 7.(5 marks)

Use logarithmic differentiation to find the derivative of the function $y=(\cos x)^{2 x}$

Question 8. (5 marks)
Find the value of the constant a if the slope of the tangent line to the curve $y=-6 a x^{2}+6 x+4$ at $x=-2$ is equal to 3 .

Find the equation of the tangent line to the curve $f(x)=e^{2 x}-3 x$ at the point $(0,1)$.

Question 10. (12 marks (3 marks each))
Find the derivatives of the following functions.
(a) $h(t)=e^{\cos (4 t)}$
(b) $g(z)=3 z^{-2} \ln (\sin z)$
(c) $f(x)=\log _{3}\left(\tan \left(x^{3}\right)\right)$
(d) $g(x)=(2 x-1)(\sin (4 x))\left(e^{-x}\right.$

Question 11. (10 marks)

Sketch the graph of $f(x)=x^{3}-3 x$. Find and clearly identify on the sketch the following:
(a) The x and
(d) The intervals where $f(x)$ is concave up/down and any points of inflection

SKETCH OF $f(x)=x^{3}-3 x$

Question 12. 12 marks (3 marks each)
Integrate the following.
(a)

$$
\int \frac{-2 \sin (2 x)}{\cos 2 x} d x
$$

(b)

$$
\int\left(20 x^{4}-18 x^{2}\right)\left(2 x^{5}-3 x^{3}\right)^{-8} d x
$$

(c)

$$
\int \sin ^{3} x \cos ^{2} x d x
$$

(d)

$$
\int_{-1}^{4} x^{\sqrt{ }} \overline{8-x} d x
$$

Question 13. (5 marks)
A discharged ($V_{c}=0$ at $\left.t=0\right) 4 \mathrm{mF}$ capacitor is to be charged by a current of $i=25 e^{1-0.75 t} \mathrm{~mA}$. Find the capacitor voltage $\left(V_{c}\right)$ at $t=135 \mathrm{~ms}$.

Question 14. (5 marks)

In the electric circuit shown below, the voltage $E=5$ (in volts) and resistance $r=100$ (in ohms) are constant, R is the resistance of a load.

In such a circuit, the electric current i is given by $\frac{E}{r+R}$ and the power P delivered to the load R is given by $P=R i^{2}$.

Given that R is positive, determine the value of R so that the power P delivered to R is a maximum.

Question 15. (5 marks)
Use implicit differentiation to find the y^{\prime} in the following equations.
(a) $x^{2} y^{3}+x+2 y=0$
(b) $\ln (x \sin y)+y=x^{2}$

BLANK PAGE

(Note: If you detach this page, make sure to hand it in with your exam)
Name:

