Dawson Cs(n)-0.503831()225286131()22528613eg

Problem 1.- (15 marks)

Solve the following systems of linear equations using the method of your choice: either the Gauss-Jordan method or the Cramer's rule (only if applicable). For each consistent system, don't forget to tell how many solutions you found? Whenever you find infinitely many solutions give also a particular solution.
(i) $3 x-7 y=0$
$6 x-14 y=12$
(ii) $x-2 y+3 z=7$
$2 x-3 y=5$
$x-3 y+2 z=-5$
(iii) $x_{1}-x_{3}+2 x_{4}=0$
$2 x_{1}+x_{2}-x_{3}-x_{4}=2$
$4 \mathrm{x}_{1}+\mathrm{x}_{2}-3 \mathrm{x}_{3}+3 \mathrm{x}_{4}=2$

Problem 2.- (12 marks)

Evaluate the determinants of the following matrices and conclude about their invertility:

$$
\mathrm{C}=\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 1 \\
0 & 0 & 5
\end{array}
$$

$$
\mathrm{D}=\begin{array}{cccc}
1 & 2 & 0 & 5 \\
4 & 0 & 0 & 0 \\
2 & -1 & 5 & 4 \\
5 & 2 & 0 & -1
\end{array}
$$

Problem 3.- (12 marks).-

Invert the following matrix A using both well known methods:

$$
\mathrm{A}=\begin{array}{ccc}
1 & 3 & 5 \\
-1 & 0 & 2 \\
4 & 4 & 2
\end{array}
$$

a) Using elementary row-operations.
b) Using cofactors and the adjoint of A .

Continuation of Problem 3

c) Use the inverse found previously in problem 3 to s

Problem 4.- (10 marks)

Given the following matrices A, B and C

$$
\mathrm{A}=\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array} \quad \mathrm{~B}=\begin{aligned}
& 7 \\
& 0 \\
& 1 \\
& 0
\end{aligned} \quad \mathrm{C}=\begin{array}{ll}
3 & 1 \\
5 & 1 \\
7 & 1
\end{array}
$$

Calculate the following expressions (if possible): $5 A, A^{2}, A^{T}, A B, A C, A^{2} C^{2},(A C)^{2}, A+C, B^{T} B, \operatorname{adj}(A)$.

Problem 5.- (15 marks)

Here A, B and C represent square matrices of same size.
a) Simplify the following expressions:
(i) $\left(5 \mathrm{~B}^{-1} \mathrm{~B}^{10} \mathrm{C}^{-1} \mathrm{~A}\right)^{-1}$
(ii) $\left(5 \mathrm{~B}^{-1}\left(\mathrm{~B}^{\mathrm{T}}\right)^{2} \mathrm{~A}^{\mathrm{T}}\right)^{\mathrm{T}}$
b) Expand the following expression: $(\mathrm{A}+\mathrm{B})\left(\mathrm{I}+\mathrm{A}^{-1}\right)\left(\mathrm{I}+\mathrm{B}^{-1}\right)$ where I is the identity matrix of same size as A and B.
c) If A and B are $4 x 4$ - matrices with $\operatorname{det}(A)=-5$ and $\operatorname{det}(B)=10$, evaluate the following determinants:
(i) $\operatorname{det}(\mathrm{BA})=$
(ii) $\operatorname{det}\left(\mathrm{A}^{-1} \mathrm{~B}^{2} \mathrm{~A}\right)$,
(iii) $\operatorname{det}\left(2 \mathrm{~B}^{-1} \mathrm{~A}\right)$
(iv) $\operatorname{det}\left(\left(10 B^{2}\right)^{T}\right)$

Problem 6.- (12 marks)

Let A, B and \mathbf{C} be three points in the space $\mathbf{R}^{\mathbf{3}}$ described by: $\mathrm{A}=(5,1,-2) \quad \mathrm{B}=(2,1,2) \quad$ and $\mathrm{C}=(9,1,1)$.
a) Show that the triangle ABC is a right triangle. Specify where is the right angle.
b)

Continuation of Problem 6

Problem 7.- (12 marks)

a) Let M be the point $(\mathbf{1}, \mathbf{- 2}, \mathbf{5})$ and \mathbf{P} be the plane described by the equation :
$\mathbf{2 x}-\mathbf{y}+\mathbf{4 z = 1 0}$. Find the distance between M and the plane \mathbf{P}.
b) Show that the line \mathbf{L} described by the parametric equations:

$$
\begin{aligned}
& \mathrm{X}=2-\mathrm{t} \\
& \mathrm{Y}=3 \mathrm{t} \\
& \mathrm{Z}=3-10 \mathrm{t}
\end{aligned}
$$

Intersects the previous plane \mathbf{P} at a point Q . Find the coordinates of Q .
c) Show that the new line \mathbf{L}^{\prime} described by the parametric equations:

$$
\begin{aligned}
& X=u \\
& Y=1-u \\
& Z=3+2 u
\end{aligned}
$$

Intersects the previous line \mathbf{L} at a point R. Find the coordinates of R.

Problem 8.- (12 marks)

Here is the diagram of the traffic network around the Courthouse square of a city:

Continuation of Problem 8

