Mathematics 201-NY C-05
Linear A lgebra (R egular)
Instructors: Mélanie Beck, Yann Lamontagne

Date: Tuesday, May 18, 2010
Time: 2:00-5:00

1. Consider the following system of equations:
(a) (5 marks) Find all solutions using Gauss-J ordan elimination.
(b) (2 marks) Find any two particulars solutions.
2. Consider the matrices

Compute whenever it is possible:
(a) (2 marks) A^{-1}
(b) (2 marks) C^{-1}
(c) $\left(2\right.$ marks) $(3 \mathrm{~A} \quad \mathrm{I}) \mathrm{B} \quad \mathrm{C}^{\top}$
(d) $(2$ marks $) \operatorname{det}(3 B)$
(e) $\left(2\right.$ marks) $\operatorname{trace}(\mathrm{AC})^{\top}$
3. Let $\mathrm{A}=\begin{array}{llll}2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 3 & 1 & 1 \\ 1 & 2 & 0 & 0\end{array}$ and B a 4 matrix $\mathbf{0}$ with $\operatorname{det}(B)=3$.
(a) (3 marks) Find $\operatorname{det}(\mathrm{A})$.
(b) (3 marks) Find $\operatorname{det}\left(3 A^{-1} B^{2}\right)$.
4. (5 marks) Prove that if $A^{\top} A=A$, then A is symmetric and $A=A^{2}$.
5. (5 marks) Show that if a square matrix A satisfies $A^{2} \quad 4 A+I=0$, then A is invertible and $A^{-1}=41 \quad A$.
6. (4 marks) Solve for $\mathrm{x}: \begin{array}{cccc}\mathrm{x} & 0 & 3 \\ 0 & \mathrm{x}+1 & 5 \\ 0 & 0 & 2\end{array} \quad 4=\begin{array}{ll}4 & 4 \\ \mathrm{x} & 5\end{array}$
7. Consider the matrices

$$
\mathrm{A}= \quad \mathrm{B}=\begin{array}{lllll}
2 & 4 & 3 \\
1 & 0 & 2 \\
2 & 3 & 4
\end{array} \quad \mathrm{C}=\begin{array}{llll}
1 & 2 & 3 / 2 \\
0 & 2 & 1 / 2 \\
0 & 7 & 7
\end{array}
$$

(a) (2 marks) Is it possible to find an elementary matrix E_{1} such that $E_{1} A=B$? If yes, what is E_{1} ? If no, justify.
(b) (2 marks) Is it possible to find an elementary matrix E_{2} such that $E_{2} B=C$? If yes, what is E_{2} ? If no, justify.
8. Consider the following system of equations:

$$
\begin{aligned}
3 x+2 y & =12 \\
x+4 y & =7
\end{aligned}
$$

(a) (3 marks) Solve the system using Cramer's rule
(b) (3 marks) Solve the system using the inverse of A.
9. Given $u=(3,0,1), v=(2,1,2)$ and $w=(4,2,1)$, find
(a) (2 marks) ku vk
(b) (2 marks)

